%* ------------------------------------------- %* mathsPIC 2.1 %* Copyright (c) RWD Nickalls 1999-2000 %* Email: dicknickalls@compuserve.com %* Date (m/d/y) : 11-05-2000 21:08:12 %* Command Line: /b/s MPICM11.M %* Input Filename: MPICM11.M %* Output Filename: MPICM11.MT %* ------------------------------------------- %% mpicm11.m (Figure 11) %\documentclass[a4paper]{article} %\usepackage{pictexwd} %\begin{document} \beginpicture \setdashes %% paper{units(mm),xrange(0,70),yrange(0,60),axes(LBT*R*),ticks(10,10)} \setcoordinatesystem units < 1mm, 1mm> \setplotarea x from 0 to 70, y from 0 to 60 \axis left ticks numbered from 0 to 60 by 10 / \axis right / \axis top / \axis bottom ticks numbered from 0 to 70 by 10 / \setsolid %% point(A){10,10} ( 10 , 10 ) %% anchor point %% point(B){A,polar(50,50deg)} ( 42.13938 , 48.30222 ) %% point(C){A,polar(50,0deg)} ( 60 , 10 ) %% point(J){pointonline(AB,30)} ( 29.28363 , 32.98133 ) %% point(K){perpendicular(J,AC)} ( 29.28363 , 10 ) %% drawRightangle(JKC,3) \plot 32.28363 10 32.28363 13 / \plot 29.28363 13 32.28363 13 / %% drawLines(AB,AC,JK) \plot 10 10 42.13938 48.30222 / %% AB \putrule from 10 10 to 60 10 %% AC \putrule from 29.28363 32.98133 to 29.28363 10 %% JK %% drawIncircle(AJK) %% Incircle centre = 23.15115 , 16.13248 ; TrueRadius = 6.132483 [ 6.132483 ] \circulararc 360 degrees from 29.28363 16.13248 center at 23.15115 16.13248 %% drawExcircle(AJK,JK) %% Excircle centre = 46.13249 , 26.84886 ; TrueRadius = 16.84886 [ 16.84886 ] \circulararc 360 degrees from 62.98135 26.84886 center at 46.13249 26.84886 \setplotsymbol({\large .}) \setdots %% drawCircumcircle(AJK) %% circumcircle centre = 19.64182 , 21.49067 ; Radius = 15 \circulararc 360 degrees from 34.64181 21.49067 center at 19.64182 21.49067 %% point(I){IncircleCenter(AJK)}[$\odot$] ( 23.15115 , 16.13248 ) %% point(E){ExcircleCenter(AJK,JK)}[$\odot$,1.2] ( 46.13249 , 26.84886 ) %% point(P1){perpendicular(E,AC)} ( 46.13249 , 10 ) %% variable(r){EP1} ( 16.84886 ) %% radius of excircle %% variable(d){72} ( 72 ) %% angle of pentagon (deg) %% variable(a1){-90} (-90 ) %% variable(a2){a1,advance(d)} (-18 ) %% variable(a3){a2,advance(d)} ( 54 ) %% variable(a4){a3,advance(d)} ( 126 ) %% variable(a5){a4,advance(d)} ( 198 ) %% point(P2){E,polar(r,a2)} ( 62.1567 , 21.64227 ) %% point(P3){E,polar(r,a3)} ( 56.036 , 40.47987 ) %% point(P4){E,polar(r,a4)} ( 36.22898 , 40.47987 ) %% point(P5){E,polar(r,a5)} ( 30.10827 , 21.64227 ) %% drawPoints(ABCJKIEP1P2P3P4P5) \put {$\bullet$} at 10 10 %% A \put {$\bullet$} at 42.13938 48.30222 %% B \put {$\bullet$} at 60 10 %% C \put {$\bullet$} at 29.28363 32.98133 %% J \put {$\bullet$} at 29.28363 10 %% K \put {$\odot$} at 23.15115 16.13248 %% I \put {$\odot$} at 46.13249 26.84886 %% E \put {$\bullet$} at 46.13249 10 %% P1 \put {$\bullet$} at 62.1567 21.64227 %% P2 \put {$\bullet$} at 56.036 40.47987 %% P3 \put {$\bullet$} at 36.22898 40.47987 %% P4 \put {$\bullet$} at 30.10827 21.64227 %% P5 \setplotsymbol({\tiny .}) \setdashes %% drawline(P1P2P3P4P5P1,EP1,EP2) \plot 46.13249 10 62.1567 21.64227 / %% P1P2 \plot 62.1567 21.64227 56.036 40.47987 / %% P2P3 \putrule from 56.036 40.47987 to 36.22898 40.47987 %% P3P4 \plot 36.22898 40.47987 30.10827 21.64227 / %% P4P5 \plot 30.10827 21.64227 46.13249 10 / %% P5P1 \putrule from 46.13249 25.64886 to 46.13249 10 %% EP1 \plot 47.27376 26.47803 62.1567 21.64227 / %% EP2 \setsolid %% drawAnglearc{angle(P2EP1),radius(9),internal,clockwise} \circulararc -71.99998 degrees from 54.692 24.0677 center at 46.13249 26.84886 \newcommand{\figtitle}{% \fbox{% \begin{minipage}{30mm}% Triangle, pentagon and three circles% \end{minipage}% }}% %% text(\figtitle){20,52} \put {\figtitle} at 20 52 %% variable(s){5} ( 5 ) %% text($A$){A,polar(s,230deg)} \put {$A$} at 6.786062 6.169777 %% text($B$){B,polar(s,50deg)} \put {$B$} at 45.35332 52.13245 %% text($C$){C,polar(s,0deg)} \put {$C$} at 65 10 %% text($J$){J,polar(s,90deg)} \put {$J$} at 29.28363 37.98133 %% text($K$){K,polar(s,270deg)} \put {$K$} at 29.28363 5 %% text($E$){E,polar(s,a3deg)} \put {$E$} at 49.07141 30.89394 %% text($72$){E,polar(5.5,-54deg)} \put {$72$} at 49.36531 22.39926 %% text($I$){I,shift(3,0)} \put {$I$} at 26.15115 16.13248 %% text($P_1$){P1,polar(s,a1)} \put {$P_1$} at 46.13249 5 %% text($P_2$){P2,polar(s,a2)} \put {$P_2$} at 66.91198 20.09719 %% text($P_3$){P3,polar(s,a3)} \put {$P_3$} at 58.97492 44.52495 \endpicture %\end{document}